#pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _WIN32 #ifndef WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN #endif #ifndef NOMINMAX #define NOMINMAX #endif #ifdef UUID_SYSTEM_GENERATOR #include #endif #include #include #include #pragma comment(lib, "IPHLPAPI.lib") #elif defined(__linux__) || defined(__unix__) #ifdef UUID_SYSTEM_GENERATOR #include #endif #elif defined(__APPLE__) #ifdef UUID_SYSTEM_GENERATOR #include #endif #endif namespace uuids { #ifdef __cpp_lib_span template using span = std::span; #else template using span = gsl::span; #endif namespace detail { template constexpr inline unsigned char hex2char(TChar const ch) { if (ch >= static_cast('0') && ch <= static_cast('9')) return ch - static_cast('0'); if (ch >= static_cast('a') && ch <= static_cast('f')) return 10 + ch - static_cast('a'); if (ch >= static_cast('A') && ch <= static_cast('F')) return 10 + ch - static_cast('A'); return 0; } template constexpr inline bool is_hex(TChar const ch) { return (ch >= static_cast('0') && ch <= static_cast('9')) || (ch >= static_cast('a') && ch <= static_cast('f')) || (ch >= static_cast('A') && ch <= static_cast('F')); } template constexpr inline unsigned char hexpair2char(TChar const a, TChar const b) { return (hex2char(a) << 4) | hex2char(b); } class sha1 { public: using digest32_t = uint32_t[5]; using digest8_t = uint8_t[20]; static constexpr unsigned int block_bytes = 64; inline static uint32_t left_rotate(uint32_t value, size_t const count) { return (value << count) ^ (value >> (32 - count)); } sha1() { reset(); } void reset() { m_digest[0] = 0x67452301; m_digest[1] = 0xEFCDAB89; m_digest[2] = 0x98BADCFE; m_digest[3] = 0x10325476; m_digest[4] = 0xC3D2E1F0; m_blockByteIndex = 0; m_byteCount = 0; } void process_byte(uint8_t octet) { this->m_block[this->m_blockByteIndex++] = octet; ++this->m_byteCount; if (m_blockByteIndex == block_bytes) { this->m_blockByteIndex = 0; process_block(); } } void process_block(void const * const start, void const * const end) { const uint8_t* begin = static_cast(start); const uint8_t* finish = static_cast(end); while (begin != finish) { process_byte(*begin); begin++; } } void process_bytes(void const * const data, size_t const len) { const uint8_t* block = static_cast(data); process_block(block, block + len); } uint32_t const * get_digest(digest32_t digest) { size_t const bitCount = this->m_byteCount * 8; process_byte(0x80); if (this->m_blockByteIndex > 56) { while (m_blockByteIndex != 0) { process_byte(0); } while (m_blockByteIndex < 56) { process_byte(0); } } else { while (m_blockByteIndex < 56) { process_byte(0); } } process_byte(0); process_byte(0); process_byte(0); process_byte(0); process_byte(static_cast((bitCount >> 24) & 0xFF)); process_byte(static_cast((bitCount >> 16) & 0xFF)); process_byte(static_cast((bitCount >> 8) & 0xFF)); process_byte(static_cast((bitCount) & 0xFF)); memcpy(digest, m_digest, 5 * sizeof(uint32_t)); return digest; } uint8_t const * get_digest_bytes(digest8_t digest) { digest32_t d32; get_digest(d32); size_t di = 0; digest[di++] = (uint8_t)(d32[0] >> 24); digest[di++] = (uint8_t)(d32[0] >> 16); digest[di++] = (uint8_t)(d32[0] >> 8); digest[di++] = (uint8_t)(d32[0] >> 0); digest[di++] = (uint8_t)(d32[1] >> 24); digest[di++] = (uint8_t)(d32[1] >> 16); digest[di++] = (uint8_t)(d32[1] >> 8); digest[di++] = (uint8_t)(d32[1] >> 0); digest[di++] = (uint8_t)(d32[2] >> 24); digest[di++] = (uint8_t)(d32[2] >> 16); digest[di++] = (uint8_t)(d32[2] >> 8); digest[di++] = (uint8_t)(d32[2] >> 0); digest[di++] = (uint8_t)(d32[3] >> 24); digest[di++] = (uint8_t)(d32[3] >> 16); digest[di++] = (uint8_t)(d32[3] >> 8); digest[di++] = (uint8_t)(d32[3] >> 0); digest[di++] = (uint8_t)(d32[4] >> 24); digest[di++] = (uint8_t)(d32[4] >> 16); digest[di++] = (uint8_t)(d32[4] >> 8); digest[di++] = (uint8_t)(d32[4] >> 0); return digest; } private: void process_block() { uint32_t w[80]; for (size_t i = 0; i < 16; i++) { w[i] = (m_block[i * 4 + 0] << 24); w[i] |= (m_block[i * 4 + 1] << 16); w[i] |= (m_block[i * 4 + 2] << 8); w[i] |= (m_block[i * 4 + 3]); } for (size_t i = 16; i < 80; i++) { w[i] = left_rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]), 1); } uint32_t a = m_digest[0]; uint32_t b = m_digest[1]; uint32_t c = m_digest[2]; uint32_t d = m_digest[3]; uint32_t e = m_digest[4]; for (std::size_t i = 0; i < 80; ++i) { uint32_t f = 0; uint32_t k = 0; if (i < 20) { f = (b & c) | (~b & d); k = 0x5A827999; } else if (i < 40) { f = b ^ c ^ d; k = 0x6ED9EBA1; } else if (i < 60) { f = (b & c) | (b & d) | (c & d); k = 0x8F1BBCDC; } else { f = b ^ c ^ d; k = 0xCA62C1D6; } uint32_t temp = left_rotate(a, 5) + f + e + k + w[i]; e = d; d = c; c = left_rotate(b, 30); b = a; a = temp; } m_digest[0] += a; m_digest[1] += b; m_digest[2] += c; m_digest[3] += d; m_digest[4] += e; } private: digest32_t m_digest; uint8_t m_block[64]; size_t m_blockByteIndex; size_t m_byteCount; }; static std::mt19937 clock_gen(std::random_device{}()); static std::uniform_int_distribution clock_dis{ -32768, 32767 }; static std::atomic_short clock_sequence = clock_dis(clock_gen); } // -------------------------------------------------------------------------------------------------------------------------- // UUID format https://tools.ietf.org/html/rfc4122 // -------------------------------------------------------------------------------------------------------------------------- // -------------------------------------------------------------------------------------------------------------------------- // Field NDR Data Type Octet # Note // -------------------------------------------------------------------------------------------------------------------------- // time_low unsigned long 0 - 3 The low field of the timestamp. // time_mid unsigned short 4 - 5 The middle field of the timestamp. // time_hi_and_version unsigned short 6 - 7 The high field of the timestamp multiplexed with the version number. // clock_seq_hi_and_reserved unsigned small 8 The high field of the clock sequence multiplexed with the variant. // clock_seq_low unsigned small 9 The low field of the clock sequence. // node character 10 - 15 The spatially unique node identifier. // -------------------------------------------------------------------------------------------------------------------------- // 0 1 2 3 // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // | time_low | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // | time_mid | time_hi_and_version | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // |clk_seq_hi_res | clk_seq_low | node (0-1) | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // | node (2-5) | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // -------------------------------------------------------------------------------------------------------------------------- // enumerations // -------------------------------------------------------------------------------------------------------------------------- // indicated by a bit pattern in octet 8, marked with N in xxxxxxxx-xxxx-xxxx-Nxxx-xxxxxxxxxxxx enum class uuid_variant { // NCS backward compatibility (with the obsolete Apollo Network Computing System 1.5 UUID format) // N bit pattern: 0xxx // > the first 6 octets of the UUID are a 48-bit timestamp (the number of 4 microsecond units of time since 1 Jan 1980 UTC); // > the next 2 octets are reserved; // > the next octet is the "address family"; // > the final 7 octets are a 56-bit host ID in the form specified by the address family ncs, // RFC 4122/DCE 1.1 // N bit pattern: 10xx // > big-endian byte order rfc, // Microsoft Corporation backward compatibility // N bit pattern: 110x // > little endian byte order // > formely used in the Component Object Model (COM) library microsoft, // reserved for possible future definition // N bit pattern: 111x reserved }; // indicated by a bit pattern in octet 6, marked with M in xxxxxxxx-xxxx-Mxxx-xxxx-xxxxxxxxxxxx enum class uuid_version { none = 0, // only possible for nil or invalid uuids time_based = 1, // The time-based version specified in RFC 4122 dce_security = 2, // DCE Security version, with embedded POSIX UIDs. name_based_md5 = 3, // The name-based version specified in RFS 4122 with MD5 hashing random_number_based = 4, // The randomly or pseudo-randomly generated version specified in RFS 4122 name_based_sha1 = 5 // The name-based version specified in RFS 4122 with SHA1 hashing }; // -------------------------------------------------------------------------------------------------------------------------- // uuid class // -------------------------------------------------------------------------------------------------------------------------- class uuid { public: using value_type = uint8_t; constexpr uuid() noexcept : data({}) {}; uuid(value_type(&arr)[16]) noexcept { std::copy(std::cbegin(arr), std::cend(arr), std::begin(data)); } uuid(std::array const & arr) noexcept { std::copy(std::cbegin(arr), std::cend(arr), std::begin(data)); } explicit uuid(span bytes) { std::copy(std::cbegin(bytes), std::cend(bytes), std::begin(data)); } template explicit uuid(ForwardIterator first, ForwardIterator last) { if (std::distance(first, last) == 16) std::copy(first, last, std::begin(data)); } constexpr uuid_variant variant() const noexcept { if ((data[8] & 0x80) == 0x00) return uuid_variant::ncs; else if ((data[8] & 0xC0) == 0x80) return uuid_variant::rfc; else if ((data[8] & 0xE0) == 0xC0) return uuid_variant::microsoft; else return uuid_variant::reserved; } constexpr uuid_version version() const noexcept { if ((data[6] & 0xF0) == 0x10) return uuid_version::time_based; else if ((data[6] & 0xF0) == 0x20) return uuid_version::dce_security; else if ((data[6] & 0xF0) == 0x30) return uuid_version::name_based_md5; else if ((data[6] & 0xF0) == 0x40) return uuid_version::random_number_based; else if ((data[6] & 0xF0) == 0x50) return uuid_version::name_based_sha1; else return uuid_version::none; } constexpr bool is_nil() const noexcept { for (size_t i = 0; i < data.size(); ++i) if (data[i] != 0) return false; return true; } void swap(uuid & other) noexcept { data.swap(other.data); } inline span as_bytes() const { return span(reinterpret_cast(data.data()), 16); } template static bool is_valid_uuid(CharT const * str) noexcept { bool firstDigit = true; int hasBraces = 0; size_t index = 0; size_t size = 0; if constexpr(std::is_same_v) size = strlen(str); else size = wcslen(str); if (str == nullptr || size == 0) return false; if (str[0] == static_cast('{')) hasBraces = 1; if (hasBraces && str[size - 1] != static_cast('}')) return false; for (size_t i = hasBraces; i < size - hasBraces; ++i) { if (str[i] == static_cast('-')) continue; if (index >= 16 || !detail::is_hex(str[i])) { return false; } if (firstDigit) { firstDigit = false; } else { index++; firstDigit = true; } } if (index < 16) { return false; } return true; } template, class Allocator = std::allocator> static bool is_valid_uuid(std::basic_string const & str) noexcept { return is_valid_uuid(str.c_str()); } template static std::optional from_string(CharT const * str) noexcept { CharT digit = 0; bool firstDigit = true; int hasBraces = 0; size_t index = 0; size_t size = 0; if constexpr(std::is_same_v) size = strlen(str); else size = wcslen(str); std::array data{ { 0 } }; if (str == nullptr || size == 0) return {}; if (str[0] == static_cast('{')) hasBraces = 1; if (hasBraces && str[size - 1] != static_cast('}')) return {}; for (size_t i = hasBraces; i < size - hasBraces; ++i) { if (str[i] == static_cast('-')) continue; if (index >= 16 || !detail::is_hex(str[i])) { return {}; } if (firstDigit) { digit = str[i]; firstDigit = false; } else { data[index++] = detail::hexpair2char(digit, str[i]); firstDigit = true; } } if (index < 16) { return {}; } return uuid{ std::cbegin(data), std::cend(data) }; } template, class Allocator = std::allocator> static std::optional from_string(std::basic_string const & str) noexcept { return from_string(str.c_str()); } private: std::array data{ { 0 } }; friend bool operator==(uuid const & lhs, uuid const & rhs) noexcept; friend bool operator<(uuid const & lhs, uuid const & rhs) noexcept; template friend std::basic_ostream & operator<<(std::basic_ostream &s, uuid const & id); }; // -------------------------------------------------------------------------------------------------------------------------- // operators and non-member functions // -------------------------------------------------------------------------------------------------------------------------- inline bool operator== (uuid const& lhs, uuid const& rhs) noexcept { return lhs.data == rhs.data; } inline bool operator!= (uuid const& lhs, uuid const& rhs) noexcept { return !(lhs == rhs); } inline bool operator< (uuid const& lhs, uuid const& rhs) noexcept { return lhs.data < rhs.data; } template std::basic_ostream & operator<<(std::basic_ostream &s, uuid const & id) { // save current flags std::ios_base::fmtflags f(s.flags()); // manipulate stream as needed s << std::hex << std::setfill(static_cast('0')) << std::setw(2) << (int)id.data[0] << std::setw(2) << (int)id.data[1] << std::setw(2) << (int)id.data[2] << std::setw(2) << (int)id.data[3] << '-' << std::setw(2) << (int)id.data[4] << std::setw(2) << (int)id.data[5] << '-' << std::setw(2) << (int)id.data[6] << std::setw(2) << (int)id.data[7] << '-' << std::setw(2) << (int)id.data[8] << std::setw(2) << (int)id.data[9] << '-' << std::setw(2) << (int)id.data[10] << std::setw(2) << (int)id.data[11] << std::setw(2) << (int)id.data[12] << std::setw(2) << (int)id.data[13] << std::setw(2) << (int)id.data[14] << std::setw(2) << (int)id.data[15]; // restore original flags s.flags(f); return s; } template, class Allocator = std::allocator> inline std::basic_string to_string(uuid const & id) { std::basic_stringstream sstr; sstr << id; return sstr.str(); } inline void swap(uuids::uuid & lhs, uuids::uuid & rhs) noexcept { lhs.swap(rhs); } // -------------------------------------------------------------------------------------------------------------------------- // namespace IDs that could be used for generating name-based uuids // -------------------------------------------------------------------------------------------------------------------------- // Name string is a fully-qualified domain name static uuid uuid_namespace_dns{ {0x6b, 0xa7, 0xb8, 0x10, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30, 0xc8} }; // Name string is a URL static uuid uuid_namespace_url{ {0x6b, 0xa7, 0xb8, 0x11, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30, 0xc8} }; // Name string is an ISO OID (See https://oidref.com/, https://en.wikipedia.org/wiki/Object_identifier) static uuid uuid_namespace_oid{ {0x6b, 0xa7, 0xb8, 0x12, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30, 0xc8} }; // Name string is an X.500 DN, in DER or a text output format (See https://en.wikipedia.org/wiki/X.500, https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One) static uuid uuid_namespace_x500{ {0x6b, 0xa7, 0xb8, 0x14, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30, 0xc8} }; // -------------------------------------------------------------------------------------------------------------------------- // uuid generators // -------------------------------------------------------------------------------------------------------------------------- #ifdef UUID_SYSTEM_GENERATOR class uuid_system_generator { public: using result_type = uuid; uuid operator()() { #ifdef _WIN32 GUID newId; ::CoCreateGuid(&newId); std::array bytes = { { (unsigned char)((newId.Data1 >> 24) & 0xFF), (unsigned char)((newId.Data1 >> 16) & 0xFF), (unsigned char)((newId.Data1 >> 8) & 0xFF), (unsigned char)((newId.Data1) & 0xFF), (unsigned char)((newId.Data2 >> 8) & 0xFF), (unsigned char)((newId.Data2) & 0xFF), (unsigned char)((newId.Data3 >> 8) & 0xFF), (unsigned char)((newId.Data3) & 0xFF), newId.Data4[0], newId.Data4[1], newId.Data4[2], newId.Data4[3], newId.Data4[4], newId.Data4[5], newId.Data4[6], newId.Data4[7] } }; return uuid{ std::begin(bytes), std::end(bytes) }; #elif defined(__linux__) || defined(__unix__) uuid_t id; uuid_generate(id); std::array bytes = { { id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11], id[12], id[13], id[14], id[15] } }; return uuid{ std::begin(bytes), std::end(bytes) }; #elif defined(__APPLE__) auto newId = CFUUIDCreate(NULL); auto bytes = CFUUIDGetUUIDBytes(newId); CFRelease(newId); std::array arrbytes = { { bytes.byte0, bytes.byte1, bytes.byte2, bytes.byte3, bytes.byte4, bytes.byte5, bytes.byte6, bytes.byte7, bytes.byte8, bytes.byte9, bytes.byte10, bytes.byte11, bytes.byte12, bytes.byte13, bytes.byte14, bytes.byte15 } }; return uuid{ std::begin(arrbytes), std::end(arrbytes) }; #else return uuid{}; #endif } }; #endif template class basic_uuid_random_generator { public: using engine_type = UniformRandomNumberGenerator; explicit basic_uuid_random_generator(engine_type& gen) : generator(&gen, [](auto) {}) {} explicit basic_uuid_random_generator(engine_type* gen) : generator(gen, [](auto) {}) {} uuid operator()() { uint8_t bytes[16]; for (int i = 0; i < 16; i += 4) *reinterpret_cast(bytes + i) = distribution(*generator); // variant must be 10xxxxxx bytes[8] &= 0xBF; bytes[8] |= 0x80; // version must be 0100xxxx bytes[6] &= 0x4F; bytes[6] |= 0x40; return uuid{std::begin(bytes), std::end(bytes)}; } private: std::uniform_int_distribution distribution; std::shared_ptr generator; }; using uuid_random_generator = basic_uuid_random_generator; class uuid_name_generator { public: explicit uuid_name_generator(uuid const& namespace_uuid) noexcept : nsuuid(namespace_uuid) {} template uuid operator()(CharT const * name) { size_t size = 0; if constexpr (std::is_same_v) size = strlen(name); else size = wcslen(name); reset(); process_characters(name, size); return make_uuid(); } template, class Allocator = std::allocator> uuid operator()(std::basic_string const & name) { reset(); process_characters(name.data(), name.size()); return make_uuid(); } private: void reset() { hasher.reset(); std::byte bytes[16]; auto nsbytes = nsuuid.as_bytes(); std::copy(std::cbegin(nsbytes), std::cend(nsbytes), bytes); hasher.process_bytes(bytes, 16); } template ::value>> void process_characters(char_type const * const characters, size_t const count) { for (size_t i = 0; i < count; i++) { uint32_t c = characters[i]; hasher.process_byte(static_cast((c >> 0) & 0xFF)); hasher.process_byte(static_cast((c >> 8) & 0xFF)); hasher.process_byte(static_cast((c >> 16) & 0xFF)); hasher.process_byte(static_cast((c >> 24) & 0xFF)); } } void process_characters(const char * const characters, size_t const count) { hasher.process_bytes(characters, count); } uuid make_uuid() { detail::sha1::digest8_t digest; hasher.get_digest_bytes(digest); // variant must be 0b10xxxxxx digest[8] &= 0xBF; digest[8] |= 0x80; // version must be 0b0101xxxx digest[6] &= 0x5F; digest[6] |= 0x50; return uuid{ digest, digest + 16 }; } private: uuid nsuuid; detail::sha1 hasher; }; // !!! DO NOT USE THIS IN PRODUCTION // this implementation is unreliable for good uuids class uuid_time_generator { using mac_address = std::array; std::optional device_address; bool get_mac_address() { if (device_address.has_value()) { return true; } #ifdef _WIN32 DWORD len = 0; auto ret = GetAdaptersInfo(nullptr, &len); if (ret != ERROR_BUFFER_OVERFLOW) return false; std::vector buf(len); auto pips = reinterpret_cast(&buf.front()); ret = GetAdaptersInfo(pips, &len); if (ret != ERROR_SUCCESS) return false; mac_address addr; std::copy(pips->Address, pips->Address + 6, std::begin(addr)); device_address = addr; #endif return device_address.has_value(); } long long get_time_intervals() { auto start = std::chrono::system_clock::from_time_t(time_t(-12219292800)); auto diff = std::chrono::system_clock::now() - start; auto ns = std::chrono::duration_cast(diff).count(); return ns / 100; } public: uuid_time_generator() { } uuid operator()() { if (get_mac_address()) { std::array data; auto tm = get_time_intervals(); short clock_seq = detail::clock_sequence++; clock_seq &= 0x3FFF; auto ptm = reinterpret_cast(&tm); ptm[0] &= 0x0F; memcpy(&data[0], ptm + 4, 4); memcpy(&data[4], ptm + 2, 2); memcpy(&data[6], ptm, 2); memcpy(&data[8], reinterpret_cast(&clock_seq), 2); // variant must be 0b10xxxxxx data[8] &= 0xBF; data[8] |= 0x80; // version must be 0b0001xxxx data[6] &= 0x5F; data[6] |= 0x10; memcpy(&data[10], &device_address.value()[0], 6); return uuids::uuid{std::cbegin(data), std::cend(data)}; } return {}; } }; } namespace std { template <> struct hash { using argument_type = uuids::uuid; using result_type = std::size_t; result_type operator()(argument_type const &uuid) const { std::hash hasher; return static_cast(hasher(uuids::to_string(uuid))); } }; }