slowly getting tracktion again
This commit is contained in:
parent
a5dea1ede1
commit
dd23fa811a
29 changed files with 685 additions and 380 deletions
|
@ -1,4 +1,38 @@
|
|||
|
||||
add_subdirectory(src)
|
||||
set(hdrs
|
||||
include/pw/core/axisangle.hpp
|
||||
include/pw/core/core.hpp
|
||||
include/pw/core/math.hpp
|
||||
include/pw/core/matrixbase.hpp
|
||||
include/pw/core/matrix.hpp
|
||||
include/pw/core/vector.hpp
|
||||
include/pw/core/quaternion.hpp
|
||||
include/pw/core/serialize.hpp
|
||||
include/pw/core/image.hpp
|
||||
include/pw/core/globals.hpp
|
||||
)
|
||||
|
||||
set(srcs
|
||||
src/core.cpp
|
||||
src/serialize.cpp
|
||||
)
|
||||
|
||||
add_library(pwcore
|
||||
STATIC
|
||||
${hdrs}
|
||||
${srcs}
|
||||
)
|
||||
|
||||
target_include_directories(
|
||||
pwcore
|
||||
PUBLIC
|
||||
include
|
||||
)
|
||||
|
||||
target_link_libraries(pwcore)
|
||||
|
||||
|
||||
|
||||
#add_subdirectory(src)
|
||||
add_subdirectory(tests)
|
||||
|
||||
|
|
|
@ -12,7 +12,10 @@ protected:
|
|||
T _angle;
|
||||
public:
|
||||
|
||||
axisangle() {}
|
||||
axisangle()
|
||||
: _axis(vector3<T>::up()),
|
||||
_angle(0)
|
||||
{}
|
||||
|
||||
axisangle(const vector3<T> &axis,const T &angle)
|
||||
: _axis(axis)
|
||||
|
|
|
@ -10,8 +10,6 @@ const static double __PW_PI = 3.141592653589793238462643383279502884197169399375
|
|||
template <typename T>
|
||||
inline const T pi() { return static_cast<T>(__PW_PI); }
|
||||
|
||||
|
||||
|
||||
template <typename T>
|
||||
inline static double rad_to_deg(const T& angle_in_radian) {
|
||||
return static_cast<T>(angle_in_radian * T(180.) / pi<T>());
|
||||
|
|
|
@ -37,135 +37,135 @@ namespace pw {
|
|||
template <typename T>
|
||||
class quaternion {
|
||||
|
||||
static const T _sqrt90;
|
||||
static const T _sqrt90;
|
||||
|
||||
public:
|
||||
|
||||
typedef vector4<T> coefficient_type;
|
||||
typedef T value_type;
|
||||
typedef vector4<T> coefficient_type;
|
||||
typedef T value_type;
|
||||
|
||||
quaternion() { *this = identity(); }
|
||||
quaternion() { *this = identity(); }
|
||||
|
||||
quaternion(const T& x,const T& y,const T& z,const T& w)
|
||||
: _q(coefficient_type(x,y,z,w)) {}
|
||||
quaternion(const T& x,const T& y,const T& z,const T& w)
|
||||
: _q(coefficient_type(x,y,z,w)) {}
|
||||
|
||||
quaternion(const coefficient_type& vec) { *this = vec; }
|
||||
quaternion(const coefficient_type& vec) { *this = vec; }
|
||||
|
||||
inline quaternion& operator = (const coefficient_type& vec) { _q = vec; return *this; }
|
||||
inline quaternion& operator = (const coefficient_type& vec) { _q = vec; return *this; }
|
||||
|
||||
inline void set(const T& x,const T& y,const T& z,const T& w) {
|
||||
_q.set(x,y,z,w);
|
||||
}
|
||||
inline void set(const T& x,const T& y,const T& z,const T& w) {
|
||||
_q.set(x,y,z,w);
|
||||
}
|
||||
|
||||
inline void set_x(const T& v) { x() = v; }
|
||||
inline void set_y(const T& v) { y() = v; }
|
||||
inline void set_z(const T& v) { z() = v; }
|
||||
inline void set_w(const T& v) { w() = v; }
|
||||
inline void set_x(const T& v) { x() = v; }
|
||||
inline void set_y(const T& v) { y() = v; }
|
||||
inline void set_z(const T& v) { z() = v; }
|
||||
inline void set_w(const T& v) { w() = v; }
|
||||
|
||||
inline const coefficient_type& as_vector() const { return _q; }
|
||||
inline const coefficient_type& as_vector() const { return _q; }
|
||||
|
||||
inline T& x() { return _q.x(); }
|
||||
inline T& y() { return _q.x(); }
|
||||
inline T& z() { return _q.z(); }
|
||||
inline T& w() { return _q.w(); }
|
||||
inline T& x() { return _q.x(); }
|
||||
inline T& y() { return _q.x(); }
|
||||
inline T& z() { return _q.z(); }
|
||||
inline T& w() { return _q.w(); }
|
||||
|
||||
inline const T& x() const { return _q.z(); }
|
||||
inline const T& y() const { return _q.y(); }
|
||||
inline const T& z() const { return _q.z(); }
|
||||
inline const T& w() const { return _q.w(); }
|
||||
inline const T& x() const { return _q.z(); }
|
||||
inline const T& y() const { return _q.y(); }
|
||||
inline const T& z() const { return _q.z(); }
|
||||
inline const T& w() const { return _q.w(); }
|
||||
|
||||
|
||||
//! multiplication
|
||||
inline const quaternion operator * (const quaternion& rhs) const {
|
||||
return quaternion(
|
||||
rhs.w()*x() + rhs.x()*w() + rhs.y()*z() - rhs.z()*y(),
|
||||
rhs.w()*y() - rhs.x()*z() + rhs.y()*w() + rhs.z()*x(),
|
||||
rhs.w()*z() + rhs.x()*y() - rhs.y()*x() + rhs.z()*w(),
|
||||
rhs.w()*w() - rhs.x()*x() - rhs.y()*y() - rhs.z()*z()
|
||||
);
|
||||
}
|
||||
//! multiplication
|
||||
inline const quaternion operator * (const quaternion& rhs) const {
|
||||
return quaternion(
|
||||
rhs.w()*x() + rhs.x()*w() + rhs.y()*z() - rhs.z()*y(),
|
||||
rhs.w()*y() - rhs.x()*z() + rhs.y()*w() + rhs.z()*x(),
|
||||
rhs.w()*z() + rhs.x()*y() - rhs.y()*x() + rhs.z()*w(),
|
||||
rhs.w()*w() - rhs.x()*x() - rhs.y()*y() - rhs.z()*z()
|
||||
);
|
||||
}
|
||||
|
||||
//! multiply with scalar
|
||||
inline const quaternion operator * (const T& s) const {
|
||||
return quaternion(x()*s,y()*s,z()*s,w()*s);
|
||||
}
|
||||
//! multiply with scalar
|
||||
inline const quaternion operator * (const T& s) const {
|
||||
return quaternion(x()*s,y()*s,z()*s,w()*s);
|
||||
}
|
||||
|
||||
//! addition
|
||||
inline const quaternion operator + (const quaternion& rhs) const {
|
||||
return quaternion(coefficient_type(this->_q + rhs._q));
|
||||
}
|
||||
//! addition
|
||||
inline const quaternion operator + (const quaternion& rhs) const {
|
||||
return quaternion(coefficient_type(this->_q + rhs._q));
|
||||
}
|
||||
|
||||
//! addition
|
||||
inline const quaternion operator - (const quaternion& rhs) const {
|
||||
return quaternion(this->_q - rhs._q);
|
||||
}
|
||||
//! addition
|
||||
inline const quaternion operator - (const quaternion& rhs) const {
|
||||
return quaternion(this->_q - rhs._q);
|
||||
}
|
||||
|
||||
//! squared norm
|
||||
inline const T squared_norm() const { return _q.squared_norm(); }
|
||||
//! squared norm
|
||||
inline const T squared_norm() const { return _q.squared_norm(); }
|
||||
|
||||
//! norm
|
||||
inline const T norm() const { return _q.norm(); }
|
||||
//! norm
|
||||
inline const T norm() const { return _q.norm(); }
|
||||
|
||||
//! dot product
|
||||
inline const T dot(const quaternion& other) const { return _q.dot(other._q); }
|
||||
//! dot product
|
||||
inline const T dot(const quaternion& other) const { return _q.dot(other._q); }
|
||||
|
||||
//! conjugate
|
||||
inline quaternion conjugate() const { return quaternion(-x(),-y(),-z(),w()); }
|
||||
//! conjugate
|
||||
inline quaternion conjugate() const { return quaternion(-x(),-y(),-z(),w()); }
|
||||
|
||||
//! compute inverse
|
||||
inline quaternion inverse() const {
|
||||
const T one_over_squared_norm = T(1) / squared_norm();
|
||||
return conjugate() * one_over_squared_norm;
|
||||
}
|
||||
//! compute inverse
|
||||
inline quaternion inverse() const {
|
||||
const T one_over_squared_norm = T(1) / squared_norm();
|
||||
return conjugate() * one_over_squared_norm;
|
||||
}
|
||||
|
||||
//! compute normalized
|
||||
inline quaternion normalized() const {
|
||||
return quaternion(_q.normalized());
|
||||
}
|
||||
//! compute normalized
|
||||
inline quaternion normalized() const {
|
||||
return quaternion(_q.normalized());
|
||||
}
|
||||
|
||||
inline void normalize() { *this = this->normalized(); }
|
||||
inline void normalize() { *this = this->normalized(); }
|
||||
|
||||
//! conversion from a matrix
|
||||
inline static const quaternion from_matrix(const matrix<4,4,T> &m);
|
||||
//! conversion from a matrix
|
||||
inline static const quaternion from_matrix(const matrix<4,4,T> &m);
|
||||
|
||||
//! conversion to a matrix
|
||||
const matrix<4,4,T> to_matrix() const;
|
||||
//! conversion to a matrix
|
||||
const matrix<4,4,T> to_matrix() const;
|
||||
|
||||
//! return identiy quaternion
|
||||
static const quaternion<T> identity();
|
||||
//! return identiy quaternion
|
||||
static const quaternion<T> identity();
|
||||
|
||||
static const quaternion<T> rotate_180_degree_around_x(); ///< rotate 180 degree around X axis
|
||||
static const quaternion<T> rotate_180_degree_around_y(); ///< rotate 180 degree around Y axis
|
||||
static const quaternion<T> rotate_180_degree_around_z(); ///< rotate 180 degree around Z axis
|
||||
static const quaternion<T> rotate_180_degree_around_x(); ///< rotate 180 degree around X axis
|
||||
static const quaternion<T> rotate_180_degree_around_y(); ///< rotate 180 degree around Y axis
|
||||
static const quaternion<T> rotate_180_degree_around_z(); ///< rotate 180 degree around Z axis
|
||||
|
||||
static const quaternion<T> rotate_90_degree_around_x(bool negative = false);
|
||||
static const quaternion<T> rotate_90_degree_around_y(bool negative = false);
|
||||
static const quaternion<T> rotate_90_degree_around_z(bool negative = false);
|
||||
static const quaternion<T> rotate_90_degree_around_x(bool negative = false);
|
||||
static const quaternion<T> rotate_90_degree_around_y(bool negative = false);
|
||||
static const quaternion<T> rotate_90_degree_around_z(bool negative = false);
|
||||
|
||||
template <typename AxisAngleType>
|
||||
static const quaternion<T> from_axisangle(const AxisAngleType &aa) {
|
||||
template <typename AxisAngleType>
|
||||
static const quaternion<T> from_axisangle(const AxisAngleType &aa) {
|
||||
|
||||
using std::sin;
|
||||
using std::cos;
|
||||
using std::sin;
|
||||
using std::cos;
|
||||
|
||||
const T sinHalfAngle(sin(aa.angle() * T(0.5) ));
|
||||
const T sinHalfAngle(sin(aa.angle() * T(0.5) ));
|
||||
|
||||
return quaternion<T>(aa.axis().x() * sinHalfAngle, // x
|
||||
aa.axis().y() * sinHalfAngle, // y
|
||||
aa.axis().z() * sinHalfAngle, // z
|
||||
cos(aa.angle() * 0.5) // w
|
||||
);
|
||||
return quaternion<T>(aa.axis().x() * sinHalfAngle, // x
|
||||
aa.axis().y() * sinHalfAngle, // y
|
||||
aa.axis().z() * sinHalfAngle, // z
|
||||
cos(aa.angle() * 0.5) // w
|
||||
);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
static const quaternion<T> lerp(const quaternion& qa,const quaternion& qb,const T& t);
|
||||
static const quaternion<T> normalized_lerp(const quaternion& qa,const quaternion& qb,const T& t);
|
||||
static const quaternion<T> slerp(const quaternion& qa,const quaternion& qb,const T& t);
|
||||
static const quaternion<T> lerp(const quaternion& qa,const quaternion& qb,const T& t);
|
||||
static const quaternion<T> normalized_lerp(const quaternion& qa,const quaternion& qb,const T& t);
|
||||
static const quaternion<T> slerp(const quaternion& qa,const quaternion& qb,const T& t);
|
||||
|
||||
|
||||
protected:
|
||||
|
||||
coefficient_type _q;
|
||||
coefficient_type _q;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
|
@ -175,138 +175,138 @@ const T quaternion<T>::_sqrt90 = std::sqrt(0.5);
|
|||
template <typename T>
|
||||
const quaternion<T> quaternion<T>::from_matrix(const matrix<4,4,T> &m) {
|
||||
|
||||
using std::sqrt;
|
||||
using std::sqrt;
|
||||
|
||||
T wtemp = sqrt(T(1) + m.at(0,0) + m.at(1,1) + m.at(2,2)) / T(2.0);
|
||||
T wtemp = sqrt(T(1) + m.at(0,0) + m.at(1,1) + m.at(2,2)) / T(2.0);
|
||||
|
||||
const T w4 = T(4.0) * wtemp;
|
||||
return quaternion<T>(
|
||||
(m.at(2,1) - m.at(1,2)) / w4,
|
||||
(m.at(0,2) - m.at(2,0)) / w4,
|
||||
(m.at(1,0) - m.at(0,1)) / w4,
|
||||
wtemp);
|
||||
const T w4 = T(4.0) * wtemp;
|
||||
return quaternion<T>(
|
||||
(m.at(2,1) - m.at(1,2)) / w4,
|
||||
(m.at(0,2) - m.at(2,0)) / w4,
|
||||
(m.at(1,0) - m.at(0,1)) / w4,
|
||||
wtemp);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const matrix<4,4,T> quaternion<T>::to_matrix() const {
|
||||
|
||||
matrix<4,4,T> m; m.set_identity();
|
||||
matrix<4,4,T> m; m.set_identity();
|
||||
|
||||
T xx = x() * x();
|
||||
T xy = x() * y();
|
||||
T xz = x() * z();
|
||||
T xw = x() * w();
|
||||
T xx = x() * x();
|
||||
T xy = x() * y();
|
||||
T xz = x() * z();
|
||||
T xw = x() * w();
|
||||
|
||||
T yy = y() * y();
|
||||
T yz = y() * z();
|
||||
T yw = y() * w();
|
||||
T yy = y() * y();
|
||||
T yz = y() * z();
|
||||
T yw = y() * w();
|
||||
|
||||
T zz = z() * z();
|
||||
T zw = z() * w();
|
||||
T zz = z() * z();
|
||||
T zw = z() * w();
|
||||
|
||||
m.at(0,0) = 1 - 2 * ( yy + zz );
|
||||
m.at(0,1) = 2 * ( xy - zw );
|
||||
m.at(0,2) = 2 * ( xz + yw );
|
||||
m.at(0,0) = 1 - 2 * ( yy + zz );
|
||||
m.at(0,1) = 2 * ( xy - zw );
|
||||
m.at(0,2) = 2 * ( xz + yw );
|
||||
|
||||
m.at(1,0) = 2 * ( xy + zw );
|
||||
m.at(1,1) = 1 - 2 * ( xx + zz );
|
||||
m.at(1,2) = 2 * ( yz - xw );
|
||||
m.at(1,0) = 2 * ( xy + zw );
|
||||
m.at(1,1) = 1 - 2 * ( xx + zz );
|
||||
m.at(1,2) = 2 * ( yz - xw );
|
||||
|
||||
m.at(2,0) = 2 * ( xz - yw );
|
||||
m.at(2,1) = 2 * ( yz + xw );
|
||||
m.at(2,2) = 1 - 2 * ( xx + yy );
|
||||
m.at(2,0) = 2 * ( xz - yw );
|
||||
m.at(2,1) = 2 * ( yz + xw );
|
||||
m.at(2,2) = 1 - 2 * ( xx + yy );
|
||||
|
||||
return m;
|
||||
return m;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const quaternion<T> quaternion<T>::identity()
|
||||
{
|
||||
return quaternion<T>(0,0,0,1);
|
||||
return quaternion<T>(0,0,0,1);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const quaternion<T> quaternion<T>::rotate_180_degree_around_x()
|
||||
{
|
||||
return quaternion<T>(1,0,0,0);
|
||||
return quaternion<T>(1,0,0,0);
|
||||
}
|
||||
template <typename T>
|
||||
const quaternion<T> quaternion<T>::rotate_180_degree_around_y()
|
||||
{
|
||||
return quaternion<T>(0,1,0,0);
|
||||
return quaternion<T>(0,1,0,0);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const quaternion<T> quaternion<T>::rotate_180_degree_around_z()
|
||||
{
|
||||
return quaternion<T>(0,0,1,0);
|
||||
return quaternion<T>(0,0,1,0);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const quaternion<T> quaternion<T>::rotate_90_degree_around_x(bool negative/* = false*/)
|
||||
{
|
||||
return quaternion<T>((negative) ? - _sqrt90 : _sqrt90,0,0,_sqrt90);
|
||||
return quaternion<T>((negative) ? - _sqrt90 : _sqrt90,0,0,_sqrt90);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const quaternion<T> quaternion<T>::rotate_90_degree_around_y(bool negative/* = false*/)
|
||||
{
|
||||
return quaternion<T>(0, (negative) ? -_sqrt90 : _sqrt90,0,_sqrt90);
|
||||
return quaternion<T>(0, (negative) ? -_sqrt90 : _sqrt90,0,_sqrt90);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const quaternion<T> quaternion<T>::rotate_90_degree_around_z(bool negative/* = false*/)
|
||||
{
|
||||
return quaternion<T>(0,0,(negative) ? -_sqrt90 : _sqrt90, _sqrt90);
|
||||
return quaternion<T>(0,0,(negative) ? -_sqrt90 : _sqrt90, _sqrt90);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const quaternion<T> quaternion<T>::lerp(const quaternion<T>& qa,const quaternion<T>& qb,const T& t) {
|
||||
return quaternion<T>(qa + (qb - qa) * t);
|
||||
return quaternion<T>(qa + (qb - qa) * t);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const quaternion<T> quaternion<T>::normalized_lerp(const quaternion<T>& qa,const quaternion<T>& qb,const T& t) {
|
||||
return quaternion<T>::lerp(qa,qb,t).normalized();
|
||||
return quaternion<T>::lerp(qa,qb,t).normalized();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const quaternion<T> quaternion<T>::slerp(const quaternion<T>& qa,const quaternion<T>& qb,const T& t)
|
||||
{
|
||||
using std::abs;
|
||||
using std::sqrt;
|
||||
using std::acos;
|
||||
using std::abs;
|
||||
using std::sqrt;
|
||||
using std::acos;
|
||||
|
||||
// quaternion to return
|
||||
quaternion qm;
|
||||
// Calculate angle between them.
|
||||
double cosHalfTheta = qa.w() * qb.w() + qa.x() * qb.x() + qa.y() * qb.y() + qa.z() * qb.z();
|
||||
// if qa=qb or qa=-qb then theta = 0 and we can return qa
|
||||
if (abs(cosHalfTheta) >= T(1.)) {
|
||||
return qa;
|
||||
}
|
||||
// quaternion to return
|
||||
quaternion qm;
|
||||
// Calculate angle between them.
|
||||
double cosHalfTheta = qa.w() * qb.w() + qa.x() * qb.x() + qa.y() * qb.y() + qa.z() * qb.z();
|
||||
// if qa=qb or qa=-qb then theta = 0 and we can return qa
|
||||
if (abs(cosHalfTheta) >= T(1.)) {
|
||||
return qa;
|
||||
}
|
||||
|
||||
// Calculate temporary values.
|
||||
double halfTheta = acos(cosHalfTheta);
|
||||
double sinHalfTheta = sqrt(1.0 - cosHalfTheta * cosHalfTheta);
|
||||
// if theta = 180 degrees then result is not fully defined
|
||||
// we could rotate around any axis normal to qa or qb
|
||||
if (::std::abs(sinHalfTheta) < 0.001){ // fabs is floating point absolute
|
||||
qm.w() = (qa.w() * 0.5 + qb.w() * 0.5);
|
||||
qm.x() = (qa.x() * 0.5 + qb.x() * 0.5);
|
||||
qm.y() = (qa.y() * 0.5 + qb.y() * 0.5);
|
||||
qm.z() = (qa.z() * 0.5 + qb.z() * 0.5);
|
||||
return qm;
|
||||
}
|
||||
double ratioA = sin((1 - t) * halfTheta) / sinHalfTheta;
|
||||
double ratioB = sin(t * halfTheta) / sinHalfTheta;
|
||||
//calculate Quaternion.
|
||||
qm.w() = (qa.w() * ratioA + qb.w() * ratioB);
|
||||
qm.x() = (qa.x() * ratioA + qb.x() * ratioB);
|
||||
qm.y() = (qa.y() * ratioA + qb.y() * ratioB);
|
||||
qm.z() = (qa.z() * ratioA + qb.z() * ratioB);
|
||||
// Calculate temporary values.
|
||||
double halfTheta = acos(cosHalfTheta);
|
||||
double sinHalfTheta = sqrt(1.0 - cosHalfTheta * cosHalfTheta);
|
||||
// if theta = 180 degrees then result is not fully defined
|
||||
// we could rotate around any axis normal to qa or qb
|
||||
if (::std::abs(sinHalfTheta) < 0.001){ // fabs is floating point absolute
|
||||
qm.w() = (qa.w() * 0.5 + qb.w() * 0.5);
|
||||
qm.x() = (qa.x() * 0.5 + qb.x() * 0.5);
|
||||
qm.y() = (qa.y() * 0.5 + qb.y() * 0.5);
|
||||
qm.z() = (qa.z() * 0.5 + qb.z() * 0.5);
|
||||
return qm;
|
||||
}
|
||||
double ratioA = sin((1 - t) * halfTheta) / sinHalfTheta;
|
||||
double ratioB = sin(t * halfTheta) / sinHalfTheta;
|
||||
//calculate Quaternion.
|
||||
qm.w() = (qa.w() * ratioA + qb.w() * ratioB);
|
||||
qm.x() = (qa.x() * ratioA + qb.x() * ratioB);
|
||||
qm.y() = (qa.y() * ratioA + qb.y() * ratioB);
|
||||
qm.z() = (qa.z() * ratioA + qb.z() * ratioB);
|
||||
|
||||
return qm;
|
||||
return qm;
|
||||
}
|
||||
|
||||
//
|
||||
|
|
|
@ -113,6 +113,12 @@ public:
|
|||
#endif
|
||||
|
||||
|
||||
static vector3<T> forward() { return vector3<T> ( 0, 0,-1); }
|
||||
static vector3<T> backward() { return vector3<T>( 0, 0, 1); }
|
||||
static vector3<T> right() { return vector3<T> ( 1, 0, 0); }
|
||||
static vector3<T> left() { return vector3<T> (-1, 0, 0); }
|
||||
static vector3<T> up() { return vector3<T> ( 0, 1, 0); }
|
||||
static vector3<T> down() { return vector3<T> ( 0,-1, 0); }
|
||||
|
||||
};
|
||||
|
||||
|
@ -120,8 +126,7 @@ public:
|
|||
|
||||
// Vec2x -----------------------------------------------------------------------
|
||||
|
||||
template <class T> class vector2 : public vector<2,T>
|
||||
{
|
||||
template <class T> class vector2 : public vector<2,T> {
|
||||
public:
|
||||
|
||||
vector2() {}
|
||||
|
|
|
@ -1,38 +0,0 @@
|
|||
|
||||
set(hdrs
|
||||
# ../include/pw/core/context.hpp
|
||||
../include/pw/core/axisangle.hpp
|
||||
../include/pw/core/core.hpp
|
||||
# ../include/pw/core/script.hpp
|
||||
# ../include/pw/core/scripting.hpp
|
||||
../include/pw/core/math.hpp
|
||||
../include/pw/core/matrixbase.hpp
|
||||
../include/pw/core/matrix.hpp
|
||||
../include/pw/core/vector.hpp
|
||||
../include/pw/core/quaternion.hpp
|
||||
../include/pw/core/serialize.hpp
|
||||
../include/pw/core/image.hpp
|
||||
../include/pw/core/globals.hpp
|
||||
)
|
||||
|
||||
set(srcs
|
||||
# script.cpp
|
||||
# context.cpp
|
||||
core.cpp
|
||||
serialize.cpp
|
||||
)
|
||||
|
||||
add_library(pwcore
|
||||
STATIC
|
||||
${hdrs}
|
||||
${srcs}
|
||||
)
|
||||
|
||||
target_include_directories(
|
||||
pwcore
|
||||
PUBLIC
|
||||
../include
|
||||
)
|
||||
|
||||
target_link_libraries(pwcore)
|
||||
|
|
@ -17,8 +17,6 @@ void test_matrixbase() {
|
|||
|
||||
m.set_identity();
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue