75 lines
3.4 KiB
Python
75 lines
3.4 KiB
Python
import string
|
|
|
|
class Schema:
|
|
|
|
def __init__(self,schema) -> None:
|
|
self.__schema = schema
|
|
|
|
def keys(self):
|
|
return self.__schema.keys()
|
|
|
|
def is_translatable(self,field):
|
|
if 'translatable' in self.__schema[field]:
|
|
return self.__schema[field]['translatable']
|
|
else:
|
|
return True
|
|
|
|
def needs_spec(self,field):
|
|
if 'spec' in self.__schema[field]:
|
|
return self.__schema[field]
|
|
else:
|
|
return False
|
|
|
|
def get_value(self,meta,field,lang):
|
|
"""
|
|
treats receiving the value like a variant,
|
|
returns values with their language specific representations
|
|
"""
|
|
match self.__schema[field]['type']:
|
|
case 'str': return meta[field][lang] if self.is_translatable(field) else meta[field]['value']
|
|
case 'enum' | 'int' | 'num' | 'multikey' : return meta[field]['value']
|
|
case 'multinum': return meta[field]['value'] if hasattr(meta[field]['value'],'__iter__') else (meta[field]['value'],) # force list!
|
|
|
|
def to_list_of_dict(self,meta,fields,lang):
|
|
"""
|
|
generates a list of dict which can easily be converted
|
|
to a pandas dataframe
|
|
"""
|
|
# list comprehension for rows
|
|
return [{'field' : field, # field name
|
|
'lang' : lang, # language shortcode
|
|
'type' : self.__schema[field]['type'], # datatype
|
|
'label' : self.__schema[field]['label'][lang], # label
|
|
'value' : self.get_value(meta,field,lang), # actual value
|
|
'template' : self.__schema[field]['template'][lang] if 'template' in self.__schema[field] else None,
|
|
# getting crazy with nested dict comprehension
|
|
'enum_values' : { k:v[lang] for (k,v) in self.__schema[field]['values'].items()} if 'enum' in self.__schema[field]['type'] else None,
|
|
'key_values' : { k:v[lang] for (k,v) in self.__schema[field]['keys'].items()} if 'multikey' in self.__schema[field]['type'] else None,
|
|
'spec' : meta[field]['spec'][lang] if 'spec' in meta[field] else None
|
|
}
|
|
for field in fields]
|
|
|
|
def to_list_of_tuple(self,meta,fields,lang):
|
|
"""
|
|
generates a list of tuples with a label and value (text)
|
|
this is usually consumed by a Markdown generator
|
|
|
|
todo: needs deuglyfication of free standing loop, templates are possible for all
|
|
"""
|
|
list = []
|
|
for r in self.to_list_of_dict(meta,fields,lang):
|
|
match r['type']:
|
|
case 'str' :
|
|
list.append( (r['label'],r['value']) )
|
|
case 'int' | 'num' :
|
|
list.append( ( r['label'], r['template'].format(value=r['value'],spec=r['spec']) if r['template'] else r['value']) )
|
|
case 'enum' :
|
|
list.append( ( r['label'], r['template'].format(value=r['enum_values'][r['value']],spec=r['spec'])
|
|
if r['template'] else r['enum_values'][r['value']] ) )
|
|
case 'multikey' :
|
|
list.append( ( r['label'], ', '.join( [r['template'].format(key=r['key_values'][k],value=v) for k,v in r['value'].items()] ) ) )
|
|
case 'multinum' :
|
|
list.append( (r['label'], ', '.join( r['template'].format(value=v) for v in r['value'])) )
|
|
|
|
return list
|
|
|