Compare commits

...
Sign in to create a new pull request.

19 commits

Author SHA1 Message Date
Hartmut Seichter
f45f7b715b checkint before trying to switch over to datafiles 2025-03-17 14:37:45 +01:00
Hartmut Seichter
d41712e010 small update to get better query mode working 2024-05-29 20:02:48 +02:00
Hartmut Seichter
ef011cda55 need to find CLI for generating summary tables 2024-05-28 09:05:20 +02:00
Hartmut Seichter
4ed9804405 bring back templating 2024-05-28 08:03:52 +02:00
Hartmut Seichter
c64b2c2044 MVP creating summary tables 2024-05-27 21:09:36 +02:00
7078c8255b minor cleanup 2024-05-27 13:28:22 +02:00
Hartmut Seichter
e489ef1517 minor update 2024-05-22 19:45:24 +02:00
Hartmut Seichter
e816fe50a2 move directory to root 2024-05-19 14:08:55 +02:00
Hartmut Seichter
18df4d059e first run of a documentation to describe the use of the various fields 2024-05-19 14:03:41 +02:00
Hartmut Seichter
7c73d3b5f6 disable old processing code 2024-05-19 10:03:00 +02:00
Hartmut Seichter
1381c37500 MVP of reworked tuple generation 2024-05-18 22:26:50 +02:00
Hartmut Seichter
833f0bdf4c enum method working 2024-05-17 21:04:50 +02:00
Hartmut Seichter
0efcea4879 just checking multinum as well 2024-05-16 23:20:31 +02:00
Hartmut Seichter
bee767eb98 first MVP to separate transformation from representation 2024-05-16 23:15:27 +02:00
Hartmut Seichter
52c3ab5c37 final refactor for book mode 2024-05-16 17:28:23 +02:00
Hartmut Seichter
df1cff80d8 refactoring previous Markdown generator into a legacy mode 2024-05-16 08:40:09 +02:00
Hartmut Seichter
e9407a6b6e avoid "parser" name ... 2024-05-12 21:07:57 +02:00
Hartmut Seichter
85abfeb743 repurpose title to make it configurable from outside 2024-05-09 23:38:20 +02:00
Hartmut Seichter
4fca7c7bae initial stab in restructuring and generating curricula 2024-05-09 22:57:10 +02:00
20 changed files with 749 additions and 659 deletions

View file

@ -5,12 +5,11 @@ to generate multi-lingual curricula documentation tables from
structured representations as a flatfile database. Data scheme and
actual values are kept in YAML files in order to version them with git.
# Usage
## Usage
```sh
$> python coursebuilder
usage: [-h] [-m META [META ...]] [-l LANG] [-f FIELDS [FIELDS ...]] [-s SCHEMA] [-p] [-t] [-b BOOK] [--level LEVEL]
[--table-gen TABLE_GEN]
usage: [-h] [-m META [META ...]] [-l LANG] [-f FIELDS [FIELDS ...]] [-s SCHEMA] [-q QUERY] [-qs QUERY_SORT] [-qc QUERY_COMPOUND] [-qf QUERY_FILTER [QUERY_FILTER ...]]
[-p] [--title TITLE] [-b BOOK] [--level LEVEL] [--table-gen TABLE_GEN] [--template TEMPLATE] [-o OUT] [--legacy] [--leftcol LEFTCOL]
versatile curricula generator
@ -23,19 +22,31 @@ options:
Fields to be used, the table will be build accordingly
-s SCHEMA, --schema SCHEMA
using provided schema
-q QUERY, --query QUERY
compound query to select items
-qs QUERY_SORT, --query-sort QUERY_SORT
sort query with a min/max over a column like min:credits
-qc QUERY_COMPOUND, --query-compound QUERY_COMPOUND
create a compound from a column with multiple values/dictionaries in cells
-qf QUERY_FILTER [QUERY_FILTER ...], --query-filter QUERY_FILTER [QUERY_FILTER ...]
filter final list of columns for output
-p, --pagebreak add a pagebreak after each module
-t, --title take first value in list as title
--title TITLE template for title - use curly brackets (i.e. {}) to mark where the title string is inserted
-b BOOK, --book BOOK process a whole curriculum book with sections
--level LEVEL level of header tags
--table-gen TABLE_GEN
runs table generator
--template TEMPLATE defines a template to be used with fields
-o OUT, --out OUT set the output type
--legacy use legacy generator mode for compatibility
--leftcol LEFTCOL maximum size of left column
```
# Author
## Author
© Copyright 2020-2024 Hartmut Seichter
# Licence
## Licence
Coursebuilder is licensed under the terms of the MIT License. For details consult https://opensource.org/license/mit/ or the attached license file

View file

@ -6,4 +6,5 @@
* [x] add a book mode for mixing input and headers (# Blah -m mod.cg.yaml)
* [~] table generator
* [ ] overlay of compulsory with other modes ...
* [ ] add template based generator
* [ ] add template based generator
* [ ] port over to structured YAML ... https://tolgee.io/platform/formats/structured_yaml

View file

@ -1,64 +1,186 @@
#!/usr/bin/env python
"""
CourseBuilder
CourseBuilder
Coursebuilder is a preprocessor tool for [pandoc](https://pandoc.org)
to generate multi-lingual curricula documentation tables from
structured representations as a flatfile database. Data scheme and
Coursebuilder is a preprocessor tool for [pandoc](https://pandoc.org)
to generate multi-lingual curricula documentation tables from
structured representations as a flatfile database. Data scheme and
actual values are kept in YAML files in order to version them with git.
"""
from argparse import ArgumentParser
import yaml
import string
import os,sys
import yaml
import pandas as pd
from string import Template
from tablegenerator import TableGenerator
from markdowngenerator import MarkdownGenerator
from templategenerator import TemplateGenerator
from metagenerator import MetaGenerator
from schema import Schema
class CourseBuilder:
@staticmethod
def generate(args):
if args.schema and args.meta:
# get actual fields
actual_fields = None
# use a file instead of list
if args.fields and os.path.isfile(args.fields[0]):
with open(args.fields[0]) as ff:
actual_fields = yaml.load(ff,Loader=yaml.Loader)['fields']
else:
# seem we have a list or None
actual_fields = args.fields
# get schema
schema = None
with open(args.schema) as f:
schema = Schema(yaml.load(f,Loader=yaml.Loader))
# if no fields are given, take all!
if actual_fields == None:
actual_fields = list(schema.keys())
result_df = []
# iterate through meta files
for m in args.meta:
with open(m) as fm:
if args.legacy:
MarkdownGenerator.generate_table_legacy(
table_items=schema.to_list_of_tuple(
meta=yaml.load(fm,Loader=yaml.Loader),
fields=actual_fields,
lang=args.lang),
add_pagebreak=args.pagebreak,
title_template=args.title,
first_colwidth=args.leftcol)
elif args.query:
lot = schema.to_short_dict(
meta=yaml.load(fm,Loader=yaml.Loader),
fields=actual_fields,
lang=args.lang)
result_df.append(pd.DataFrame([lot]))
else:
MarkdownGenerator.generate_table(
table_items=schema.to_list_of_tuple(
meta=yaml.load(fm,Loader=yaml.Loader),
fields=actual_fields,
lang=args.lang),
add_pagebreak=args.pagebreak,
title_template=args.title,
first_colwidth=args.leftcol)
# query mode
if args.query and len(result_df):
# got the list
df = pd.concat(result_df,ignore_index=True)
# generate a dataframe
df_q = df.query(args.query)
# generate a compound column --query-compound column:sum
if args.query_compound:
# print('{}.sum'.format(args.query_compound))
df_q.loc[:,'{}.sum'.format(args.query_compound)] = df_q[args.query_compound].apply(lambda x: sum(list(x.values())))
print(df_q)
# --query-sort is parameterized as min:credits - hence direction:column
if args.query_sort:
qs = args.query_sort.split(':')
match qs[0]:
case 'min' : df_q = df_q.sort_values(by=qs[1],ascending=True,key=lambda col: min(col) if hasattr(col,'__len()__') else col)
case 'max' : df_q = df_q.sort_values(by=qs[1],ascending=False,key=lambda col: max(col) if hasattr(col,'__len()__') else col)
# filter query
if args.query_filter:
df_q = df_q.loc[:,args.query_filter]
# print(df_q.head())
# set value transforms
if args.query_template:
# no idea yet how to parameterize this
ww = 'written'
#df_q['form-of-exam'] = 'Schriftlich' if df_q.loc[:,'form-of-exam'] == 'written' else 'was anderes'
# mm = Template("{'written':'S','oral':'mündlich'}[${v}]")?
# print(mm.format(v=mm))
# lets get crazy to create a summary table!
# df_summary = pd.DataFrame([{
# 'sum.credits': df_q['credits'].sum()
# }])
# set labels directly!
if args.query_labels:
df_q.columns = args.query_labels
q_as_md = df_q.to_markdown(tablefmt='grid',index=False)
print(q_as_md)
# print(df_summary.to_markdown(tablefmt='grid',index=False))
@staticmethod
def run():
# arguments
parser = ArgumentParser(description='versatile curricula generator')
# loading mode for internal database
parser.add_argument('-m','--meta',action="extend", nargs="+", type=str,help="course description(s) as YAML file(s)")
parser.add_argument('-l','--lang',help="Language to parse from meta file (use de or en)",default='de')
parser.add_argument('-f','--fields',help="Fields to be used, the table will be build accordingly",action="extend", nargs="+", type=str)
parser.add_argument('-s','--schema',help="using provided schema")
parser.add_argument('-s','--schema', help="using provided schema")
# query mode
parser.add_argument('-q','--query', type=str, default=None, help="compound query to select items")
parser.add_argument('-qs','--query-sort',type=str,default=None,help="sort query with a min/max over a column like min:credits")
parser.add_argument('-qc','--query-compound',type=str,default=None,help="create a compound from a column with multiple values/dictionaries in cells")
parser.add_argument('-qf','--query-filter',type=str,default=[],action="extend", nargs="+",help="filter final list of columns for output")
parser.add_argument('-ql','--query-labels',type=str,default=[],action="extend", nargs="+",help="new labels for query like")
parser.add_argument('-qt','--query-template',type=str,default=[],action="extend", nargs="+",help="templates for values in the form of {value}")
# create pagebreaks
parser.add_argument('-p','--pagebreak',action="store_true",help="add a pagebreak after each module")
parser.add_argument('-t','--title',action="store_true",help="take first value in list as title")
parser.add_argument('--title',type=str,default=None,help="template for title - use curly brackets (i.e. {}) to mark where the title string is inserted")
parser.add_argument('-b','--book',type=str,help="process a whole curriculum book with sections")
parser.add_argument('--level',type=int,default=1,help="level of header tags")
parser.add_argument('--table-gen',type=str,default=None,help='runs table generator')
parser.add_argument('--template',type=str,default=None,help='defines a template to be used with fields')
parser.add_argument('-o','--out',type=str,default=None,help='set the output type')
parser.add_argument('--legacy',action="store_true",help="use legacy generator mode for compatibility")
parser.add_argument('--leftcol',type=int,default=35,help='maximum size of left column')
# get arguments
args = parser.parse_args()
if args.table_gen:
tg = TableGenerator()
tg.generate_table(args.table_gen)
return
# book mode with predefined setting from a book file
if args.book and args.schema:
generator = MetaGenerator()
with open(args.schema) as sf:
generator.set_schema(yaml.load(sf,Loader=yaml.Loader))
with open(args.book) as bf:
@ -68,63 +190,36 @@ class CourseBuilder:
book_path = os.path.abspath(args.book)
for bi in book['book']:
if 'fields' in bi:
actual_fields = bi['fields']
if 'sections' in bi:
for section in bi['sections']:
if 'text' in section:
print(section['text'][args.lang])
# gernerate section wise parts
if 'modules' in section:
for m in section['modules']:
mod_path = os.path.join(os.path.dirname(book_path),m)
with open(mod_path) as fm:
try:
# override fields
args.fields = actual_fields
table_items = generator.process(yaml.load(fm,Loader=yaml.Loader),fields=actual_fields,lang=args.lang,pagebreak=args.pagebreak,createTitle=args.title,header_level=args.level)
MarkdownGenerator.generate(table_items,pagebreak=args.pagebreak,title=args.title,header_level=args.level)
except Exception as exc:
print(f'{type(exc).__name__} in {mod_path}: {exc}',file=sys.stderr)
# expand filenames to be relative to the book
args.meta = [os.path.join(os.path.dirname(book_path),mod_path) for mod_path in section['modules']]
CourseBuilder.generate(args=args)
# verbose command line mode
elif args.schema and args.meta and len(args.fields) > 0:
# get actual fields
actual_fields = []
if os.path.isfile(args.fields[0]):
with open(args.fields[0]) as ff:
actual_fields = yaml.load(ff,Loader=yaml.Loader)['fields']
else:
actual_fields = args.fields
# get schema
actual_schema = None
with open(args.schema) as f:
actual_schema = yaml.load(f,Loader=yaml.Loader)
# iterate through meta files
for m in args.meta:
with open(m) as fm:
generator = MetaGenerator()
generator.set_schema(actual_schema)
table_items = generator.process(yaml.load(fm,Loader=yaml.Loader),fields=actual_fields,lang=args.lang,pagebreak=args.pagebreak,createTitle=args.title,header_level=args.level,template=args.template)
if args.template:
TemplateGenerator.generate(table_items)
else:
MarkdownGenerator.generate(table_items,pagebreak=args.pagebreak,title=args.title,header_level=args.level)
# print(table_items)
elif args.schema:
CourseBuilder.generate(args=args)
else:
parser.print_help()
# run as main
if __name__ == '__main__':
# recommended setting for pandas
pd.options.mode.copy_on_write = True
# run
CourseBuilder.run()

View file

@ -1,25 +1,44 @@
#!/usr/bin/env python
import textwrap,itertools
# we need raw value maybe add a third item - tuple the input?
# alternative use a dictionary
# { name: XYZ }
# or make it the class
import itertools
class MarkdownGenerator:
@staticmethod
def generate_tablerow() -> str:
pass
@staticmethod
def generate_table(table_items,add_pagebreak = False,title_template = None,first_colwidth = 28):
import pandas as pd
import tabulate
# get the dataframe
df = pd.DataFrame(table_items)
# use first column for
df.columns = df.iloc[0]
df = df[1:]
if title_template != None:
print(title_template.format(df.columns[1]),'\n')
print(df.to_markdown(tablefmt='grid', index=False, maxcolwidths=[first_colwidth,None]))
print('\n') # always add a newline after the table
if add_pagebreak:
print('\\pagebreak')
@staticmethod
def generate(ti,pagebreak = False,title = False,header_level = 1) -> str:
def generate_table_legacy(table_items,add_pagebreak = False,title_template = None,first_colwidth = 28):
import textwrap
line_length = 128
column_ratio= 0.28
column_ratio = float(first_colwidth) / 100
h_len = int(line_length * column_ratio)
d_len = line_length-h_len
@ -27,8 +46,8 @@ class MarkdownGenerator:
#
# generate title (currently the first one)
#
if title:
print('#' * header_level,ti[0][1],'\n')
if title_template != None:
print(title_template.format(table_items[0][1]),'\n')
print(''.join(['+',"".ljust(h_len,'-'),'+',"".ljust(d_len,'-'),'+']))
@ -40,7 +59,7 @@ class MarkdownGenerator:
# test if this affected by a third item!
for k,v in ti:
for k,v in table_items:
#
if v == None:
@ -79,5 +98,5 @@ class MarkdownGenerator:
# to control pagebreaks for pandoc
if pagebreak:
if add_pagebreak:
print('\n\\newpage')

View file

@ -1,155 +0,0 @@
import os,string,sys
import yaml
class MetaGenerator:
def __init__(self) -> None:
self.__schema = None
def set_schema(self,schema = None):
self.__schema = schema
def get_template(self,field,lang='de'):
if 'template' in self.__schema[field]:
return self.__schema[field]['template'][lang]
else:
return "$value"
def is_translatable(self,field):
if 'translatable' in self.__schema[field]:
return self.__schema[field]['translatable']
else:
return True
def needs_spec(self,field):
if 'spec' in self.__schema[field]:
return self.__schema[field]
else:
return False
def process_label(self,field,lang='de'):
# processes the label of a field item
return self.__schema[field]['label'][lang]
def process_str(self,meta,field,lang='de'):
if self.is_translatable(field):
return [self.process_label(field,lang),meta[field][lang]]
else:
if not 'value' in meta[field]:
raise AssertionError(field,'incomplete')
return [self.process_label(field,lang),meta[field]['value']]
def process_enum(self,meta,field,lang='de'):
"""
enum have a specification 'specs' option
that can be forced by the scheme
"""
vv = meta[field]['value']
enum_val = self.__schema[field]['values'][vv][lang]
if self.needs_spec(field):
t = string.Template(self.get_template(field=field,lang=lang))
spec = meta[field]['spec'][lang]
return [self.process_label(field,lang),t.substitute({'value': enum_val,'spec': spec})]
else:
return [self.process_label(field,lang),enum_val]
def process_num(self,meta,field,lang='de'):
v = meta[field]['value']
t = string.Template(self.get_template(field,lang))
return [self.process_label(field,lang),t.substitute({'value' : v})]
def process_multinum(self,meta,field,lang='de'):
v = meta[field]['value']
t = string.Template(self.get_template(field,lang))
if hasattr(v, "__len__"):
vv = [t.substitute({'value' : ev}) for ev in v]
return [self.process_label(field,lang),', '.join(vv)]
else:
return self.process_num(meta=meta,field=field,lang=lang)
def process_multikey(self,meta,field,lang='de'):
"""
multikey need to assign a numeric value to a key
"""
vs = meta[field]['value']
t = string.Template(self.get_template(field,lang))
k = self.process_label(field,lang)
parts = []
for e in vs:
kk = self.__schema[field]['keys'][e][lang]
parts.append(t.substitute({'key': kk, 'value' : vs[e]}))
return [k,', '.join(parts)]
def process(self,meta,fields = [],lang = 'de',pagebreak = False,createTitle=False,header_level=1,template=None):
table_items = []
# iterate over requested fields
for field in fields:
try:
# correlate with schema and append
match self.__schema[field]['type']:
case 'str': table_items.append(self.process_str(meta,field,lang))
case 'enum': table_items.append(self.process_enum(meta,field,lang))
case 'int' | 'num' : table_items.append(self.process_num(meta,field,lang))
case 'multinum' : table_items.append(self.process_multinum(meta,field,lang))
case 'multikey': table_items.append(self.process_multikey(meta,field,lang))
except Exception as exp:
print(field,' not resolvable in ',self.__schema,exp)
# maybe return tableitems as np.Dataframe?
return table_items
# if template != None:
# # use template generator
# TemplateGenerator.generate(table_items,pagebreak,createTitle,header_level=header_level)
# pass
# else:
# # conventional MD mode
# MarkdownGenerator.generate(table_items,pagebreak,createTitle,header_level=header_level)
# def process_book_section(self,section,lang='de'):
# pass
# book mode
# def process_book(self,book,bookpath,create_title,pagebreak,lang='de',header_level=2):
# actual_fields = []
# for bi in book['book']:
# if 'fields' in bi:
# actual_fields = bi['fields']
# if 'sections' in bi:
# for section in bi['sections']:
# if 'text' in section:
# print(section['text'][lang])
# if 'modules' in section:
# for m in section['modules']:
# mod_path = os.path.join(os.path.dirname(bookpath),m)
# with open(mod_path) as fm:
# try:
# table_items = self.process(yaml.load(fm,Loader=yaml.Loader),fields=actual_fields,lang=lang,pagebreak=pagebreak,createTitle=create_title,header_level=header_level)
# print(table_items)
# except Exception as exc:
# print(f'{type(exc).__name__} in {mod_path}: {exc}',file=sys.stderr)

87
coursebuilder/schema.py Normal file
View file

@ -0,0 +1,87 @@
import string
class Schema:
def __init__(self,schema) -> None:
self.__schema = schema
def __getitem__(self, field):
return self.__schema[field]
def keys(self):
return self.__schema.keys()
def is_translatable(self,field):
if 'translatable' in self.__schema[field]:
return self.__schema[field]['translatable']
else:
return True
def needs_spec(self,field):
if 'spec' in self.__schema[field]:
return self.__schema[field]
else:
return False
def get_value(self,meta,field,lang):
"""
treats receiving the value like a variant,
returns values with their language specific representations
"""
match self.__schema[field]['type']:
case 'str': return meta[field][lang] if self.is_translatable(field) else meta[field]['value']
case 'enum' | 'int' | 'num' | 'multikey' : return meta[field]['value']
case 'multinum': return meta[field]['value'] if hasattr(meta[field]['value'],'__iter__') else [meta[field]['value'],] # force list!
def to_list_of_dict(self,meta,fields,lang):
"""
generates a list of dict which can easily be converted
to a pandas dataframe
"""
# list comprehension for rows
return [{'field' : field, # field name
'lang' : lang, # language shortcode
'type' : self.__schema[field]['type'], # datatype
'label' : self.__schema[field]['label'][lang], # label
'value' : self.get_value(meta,field,lang), # actual value
'template' : self.__schema[field]['template'][lang] if 'template' in self.__schema[field] else None,
# getting crazy with nested dict comprehension
'enum_values' : { k:v[lang] for (k,v) in self.__schema[field]['values'].items()} if 'enum' in self.__schema[field]['type'] else None,
'key_values' : { k:v[lang] for (k,v) in self.__schema[field]['keys'].items()} if 'multikey' in self.__schema[field]['type'] else None,
'spec' : meta[field]['spec'][lang] if 'spec' in meta[field] else None
}
for field in fields]
def to_short_dict(self,meta,fields,lang):
"""
generates a short version of dict which can easily be converted
to a pandas dataframe
"""
# dict comprehension for whole meta part
return { field : self.get_value(meta,field,lang) for field in fields }
def to_list_of_tuple(self,meta,fields,lang):
"""
generates a list of tuples with a label and value (text)
this is usually consumed by a Markdown generator
todo: needs deuglyfication of free standing loop, templates are possible for all
"""
list = []
for r in self.to_list_of_dict(meta,fields,lang):
match r['type']:
case 'str' :
list.append( (r['label'],r['value']) )
case 'int' | 'num' :
list.append( ( r['label'], r['template'].format(value=r['value'],spec=r['spec']) if r['template'] else r['value']) )
case 'enum' :
list.append( ( r['label'], r['template'].format(value=r['enum_values'][r['value']],spec=r['spec'])
if r['template'] else r['enum_values'][r['value']] ) )
case 'multikey' :
list.append( ( r['label'], ', '.join( [r['template'].format(key=r['key_values'][k],value=v) for k,v in r['value'].items()] ) ) )
case 'multinum' :
list.append( (r['label'], ', '.join( r['template'].format(value=v) for v in r['value'])) )
return list

View file

@ -4,6 +4,8 @@ import string
import tempfile
import subprocess
import os
import pandas as pd
import tabulate
class TableGenerator:
"""

41
docs/quickstart.md Normal file
View file

@ -0,0 +1,41 @@
# concept
The concept behind coursebuilder is to store curricula descriptions in `YAML` files that can be versioned in a git repository. Unlike classic databases, an observable and well defined versioning is paramount in these descriptions as they are the legal foundation for study and exam regulations.
The following pieces play together here:
- `schema` files, usually a `schema.yaml`
- `mod` files, usually something along the lines of `mod.coursecode.yaml`
- `book` files describing a whole regulation set and course global details
- some sort of transformation with `coursebuilder` into Markdown that is piped through [pandoc](https://pandoc.org) in order to generate PDF, HTML and other representation from this code
# schema files
Schema files are responsible to describe the used structures in a database. The following datatypes are supported:
- `str` a simple string, can be accompanied with a `template`
- `enum` a classic enum datatype with a fixed set of values
- `num` a numeric datatype
- `multinum` an array type with the possibility to `spec` each value
- `multikey` a key-value type with additional numeric data associated with each key instance
# mod files (modules)
Modules describe a course in detail and implement an instance of the schema file. Especially `strings` and `enums` are translatable One of the plan is to use a validator to find inconsistencies automatically, like workloads that are not following the 30h = 1ECTS rule.
# datatypes
## `str` datatype
```yaml
# this would reside in a schema field on top level
# a field of name 'id'
id: # name of the field
type: str # sets the datatype to str
translatable: false # enforces the value is not translatable (default is true)
label: { # label describes the meaning of the datatype in regards of the schema
de: "Kürzel", # translation of the label in German (de)
en: "code" # translation of the label in English (en)
}
```

7
requirements.txt Normal file
View file

@ -0,0 +1,7 @@
numpy==1.26.4
pandas==2.2.2
python-dateutil==2.9.0.post0
pytz==2024.1
six==1.16.0
tabulate==0.9.0
tzdata==2024.1

44
test/Makefile Normal file
View file

@ -0,0 +1,44 @@
# debug make file for testing
build_dir := build
target_en := ${build_dir}/table.en.pdf
target_de := ${build_dir}/table.de.pdf
target_de_book := ${build_dir}/curricullum.de.pdf
targets := ${target_de} ${target_en} ${target_de_book}
target_flags := --template pandoc-template/eisvogel.latex -V table-use-row-colors:true
coursebuilder := ../coursebuilder
all: ${targets}
${target_en}: mod.cg.yaml
@echo "creating English version ..."
mkdir -p ${build_dir}
python ${coursebuilder} -s schema.yaml -m $^ -l en -f fields.yaml | pandoc ${target_flags} -o ${target_en}
${target_de}: mod.cg.yaml
@echo "creating German version ..."
mkdir -p ${build_dir}
python ${coursebuilder} -s schema.yaml -m $^ -l de -f fields.yaml | pandoc ${target_flags} -o ${target_de}
${target_de_book}: *.yaml
python ${coursebuilder} -s schema.yaml -b book.yaml -p --title "### {}" -l de --leftcol 25 --legacy | pandoc ${target_flags} -V toc:true -V lang:de -o ${target_de_book}
clean:
rm -f ${targets}
debug:
python ${coursebuilder} -s schema.yaml -m mod.cg.yaml mod.interactsys.yaml mod.test.yaml -p --title "## {}" -l de -f name credits goal content
# | pandoc ${target_flags} -V lang:de -o ${target_de}
debug-query:
python ${coursebuilder} -s schema.yaml -m mod.cg.yaml mod.interactsys.yaml -q "kind=='compulsory'" -qs min:credits -qc form-of-instruction -qf name credits form-of-exam -ql Modulname Kreditpunkte Prüfungsart -qt quatsch
debug-query-book:
python ${coursebuilder} -s schema.yaml -b book.yaml -q "kind=='compulsory'" -qs min:credits -qc form-of-instruction -qf name credits form-of-instruction -ql Modulname Kürzel Kreditpunkte
debug-query-full:
python ${coursebuilder} -s ~/Documents/MaACS/MHB/schema.yaml -b ~/Documents/MaACS/MHB/book.yaml -q "kind=='compulsory_elective'" -qc form-of-instruction -qf name form-of-instruction.sum credits term -ql Modulname SWS Kreditpunkte Semester
.PHONY: clean

View file

@ -4,8 +4,9 @@
#
book:
- fields:
- name
- fields:
- name
- instructor
- id
- goal
- content
@ -33,5 +34,21 @@ book:
en: "## elective courses {.unnumbered}"
- modules:
- mod.interactsys.yaml
- mod.test.yaml
#
# tables
#
query:
list-credits-and-workload:
- fields:
- name
- credits
- workload
# just for ideas
regulations:
- globals:
- course_name: Applied Computer Science (M.Sc.)

View file

@ -1,5 +1,6 @@
fields:
- name
- name
- instructor
- id
- goal
- content

View file

@ -2,6 +2,9 @@ name:
de: Computergrafik
en: Computer Graphics
instructor:
de: Prof. Hartmut Seichter, PhD
en: Prof. Hartmut Seichter, PhD
id:
value: CG

106
test/mod.test.yaml Normal file
View file

@ -0,0 +1,106 @@
name:
de: Test Vorlesung
en: Lecture of Test
instructor:
de: Cicero
en: Cicero
id:
value: Test
credits:
value: 5
form-of-exam:
value: written
form-of-instruction:
value: { 'lecture': 2, 'exersise': 1 }
term:
value: [1, 3]
duration:
value: 1
kind:
value: compulsory
goal:
de: |
**What is it**
Lorem Ipsum is simply dummy text of the printing and typesetting
industry. Lorem Ipsum has been the industry's standard dummy text
ever since the 1500s, when an unknown printer took a galley of type
and scrambled it to make a type specimen book. It has survived not only
five centuries, but also the leap into electronic typesetting, remaining
essentially unchanged. It was popularised in the 1960s with the release
of Letraset sheets containing Lorem Ipsum passages, and more recently with
desktop publishing software like Aldus PageMaker including versions of
Lorem Ipsum.
en: |
content:
de: |
**Where did it come from**
Contrary to popular belief, Lorem Ipsum is not simply random text.
It has roots in a piece of classical Latin literature from 45 BC,
making it over 2000 years old. Richard McClintock, a Latin professor
at Hampden-Sydney College in Virginia, looked up one of the more
obscure Latin words, consectetur, from a Lorem Ipsum passage, and
going through the cites of the word in classical literature,
discovered the undoubtable source. Lorem Ipsum comes from sections
1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The
Extremes of Good and Evil) by Cicero, written in 45 BC. This book
is a treatise on the theory of ethics, very popular during the
Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor
sit amet..", comes from a line in section 1.10.32.
en: |
teaching-material:
de: |
en: |
prerequisites:
de: ""
en: ""
author-of-indenture:
de: ""
en: ""
used-in:
de: "Master Applied Computerscience"
en: "Master Applied Computerscience"
workload:
de: "2SWS Vorlesung 1SWS Übung"
en: "2SWS lecture 1SWS exersise"
form-of-exam:
value: written
spec:
de: "120min Klausur"
en: "120min exam"
frequency:
value: once_per_year
kind:
value: compulsory
remarks:
de:
en:

228
test/schema.yaml Normal file
View file

@ -0,0 +1,228 @@
# fields in curricular description
# leaning on methods in OpenAPI 3.0
#
# Modulname
#
name:
type: str
label:
de: "Modulname"
en: "name of course"
#
# Modulverantwortliche:r
#
instructor:
type: str
label:
de: "Modulverantwortlicher / Modulverantwortliche"
en: "module instructor"
#
# Kürzel / ID
#
id:
type: str
translatable: false
label: { de: "Kürzel", en: "code" }
#
# Qualifikationsziele
#
# Welche fachbezogenen, methodischen, fachübergreifende Kompetenzen,
# Schlüsselqualifikationen - werden erzielt (erworben)? Diese sind
# an der zu definierenden Gesamtqualifikation (angestrebter Abschluss) auszurichten.
#
# Lernergebnisse sind Aussagen darüber, was ein Studierender nach Abschluss des Moduls weiß,
# versteht und in der Lage ist zu tun. Die Formulierung sollte sich am Qualifikationsrahmen
# für Deutsche Hochschulabschlüsse orientieren und Inhaltswiederholungen vermeiden.
#
# Des Weiteren finden Sie im QM-Portal die „Handreichung zur Beschreibung von Lernzielen“
# als Formulierungshilfe.
goal:
type: str
label: { de: "Qualifikationsziele", en: "educational goal" }
#
# Modulinhalte
#
# Welche fachlichen, methodischen, fachpraktischen und fächerübergreifenden
# Inhalte sollen vermittelt werden?
#
# Es ist ein stichpunktartiges Inhaltsverzeichnis zu erstellen.
content:
type: str
label: { de: "Modulinhalte", en: "content" }
#
# Lehrform
#
#
# Welche Lehr- und Lernformen werden angewendet?
# (Vorlesungen, Übungen, Seminare, Praktika,
# Projektarbeit, Selbststudium)
#
# Es sind nur Werte aus der Prüfungsordung zugelassen
#
form-of-instruction:
type: multikey
label: { de: "Lehrform(en)", en: "form of instruction" }
keys:
{
"lecture": { de: "Vorlesung", en: "lecture" },
"lecture_seminar":
{ de: "Seminaristische Vorlesung", en: "lecture and seminar" },
"seminar": { de: "Seminar", en: "seminar" },
"exersise": { de: "Übung", en: "lab exersise" },
"pc_lab": { de: "Rechnergestütztes Praktikum", en: "PC exersise" },
"project": { de: "Project", en: "project" },
}
template:
de: "{key} ({value}SWS)"
en: "{key} ({value}SWS)"
#
# Voraussetzungen für die Teilnahme
#
# Für jedes Modul sind die Voraussetzungen für die Teilnahme zu beschreiben.
# Welche Kenntnisse, Fähigkeiten und Fertigkeiten sind für eine
# erfolgreiche Teilnahme vorauszusetzen?
#
# Alternativ können die Module benannt werden welche für die erfolgreiche
# Teilnahme im Vorfeld zu belegen sind.
prerequisites:
type: str
label: { de: "Voraussetzungen für die Teilnahme", en: "prerequisites" }
#
# Literatur und multimediale Lehr- und Lernprogramme
#
#
# Wie können die Studierenden sich auf die Teilnahme an diesem Modul vorbereiten?
#
teaching-material:
type: str
label:
{
de: "Literatur und multimediale Lehr- und Lernprogramme",
en: "media of instruction",
}
#
# Lehrbriefautor
#
author-of-indenture:
type: str
label: { de: "Lehrbriefautor", en: "author of indenture" }
#
# Verwendung in (Studienprogramm)
#
used-in:
type: str
label: { de: "Verwendung", en: "used in study programs" }
#
# Arbeitsaufwand
#
workload:
type: str
label: { de: "Arbeitsaufwand / Gesamtworkload", en: "workload" }
#
# credits/ECTS
#
credits:
type: num
unit: ECTS
label:
{
en: "credits and weight of mark",
de: "Kreditpunkte und Gewichtung der Note in der Gesamtnote",
}
template:
de: "{value}CP, Gewichtung: {value}CP von 120CP "
en: "{value}CP, weight: {value} / 120 "
#
# Leistungsnachweis
#
form-of-exam:
type: enum
label: { de: "Leistungsnachweis", en: "form of examination" }
values:
{
"written": { de: "Schriftliche Prüfung", en: "written exam" },
"oral": { de: "Mündliche Prüfung", en: "oral exam" },
"alternative":
{ de: "Alternative Prüfungunsleistung", en: "alternative examination" },
}
spec: true
template:
de: "{value} ({spec})"
en: "{value} ({spec})"
#
# Semester
#
term:
type: multinum
label: { de: "Semester", en: "term" }
template:
de: "{value}\\. Semester"
en: "{value}\\. semester"
#
# Häufigkeit des Angebots
#
frequency:
type: enum
label: { de: "Häufigkeit des Angebots", en: "frequency of Offer" }
values:
{
"once_per_term": { de: "jedes Semester", en: "every semester" },
"once_per_year":
{ de: "einmal im Studienjahr", en: "once per study year" },
}
#
# Dauer des Angebots
#
duration:
type: int
label:
de: Dauer
en: duration
template:
de: "{value} Semester"
en: "{value} term(s)"
#
# Art der Veranstaltung
#
kind:
type: enum
label:
{
de: "Art der Veranstaltung (Pflicht, Wahl, etc.)",
en: "kind of module (compulsory, elective)",
}
values:
{
"compulsory": { de: "Pflicht", en: "compulsory" },
"elective": { de: "Wahl/Wahlpflicht", en: "elective" },
}
#
# Freiform Bemerkungen
#
remarks:
type: str
label: { de: "Besonderes", en: "remarks" }

View file

@ -1,28 +0,0 @@
coursebuilder := ../../coursebuilder
table.en.pdf:
@echo "creating English version ..."
python ${coursebuilder} -s schema.yaml -m mod.cg.yaml -l en -f fields.yaml | pandoc --template pandoc-template/eisvogel.latex -o table.en.pdf
table.de.pdf:
@echo "creating German version ..."
python ${coursebuilder} -s schema.yaml -m mod.cg.yaml -l de -f fields.yaml | pandoc --template pandoc-template/eisvogel.latex -o table.de.pdf
all: table.en.pdf table.de.pdf
clean:
rm -f table.en.pdf table.de.pdf
debug-template:
python ${coursebuilder} -s schema.yaml -m mod.cg.yaml mod.interactsys.yaml -l de -f name credits --template "$$name | $$credits"
debug-markdown:
python ${coursebuilder} -s schema.yaml -m mod.cg.yaml mod.interactsys.yaml -l de -f name credits
debug-book:
python ${coursebuilder} -s schema.yaml -b book.yaml -l de
debug:
python ${coursebuilder} -s schema.yaml -m mod.cg.yaml -l de -f fields.yaml

View file

@ -1,98 +0,0 @@
name:
en: Test Course
test:
competency-table:
de:
- "Lineare Algebra": 'ABC'
- "Vector Spaces": 'A'
#
# nested lists seem to work in Markdown only in the US style way
#
# reference here: https://meta.stackexchange.com/questions/85474/how-to-write-nested-numbered-lists
#
# note the parser actually corrects 'Tervuren' to 3 in resulting data
#
content:
en: |
1. Blah
2. Blub
1. Blah
1. Blub
1. Blah
1. Blub
1. Blah
1. Blub
1. Blah
1. Blub
3. Blah
4. Blub
<!-- break -->
5. Blah
6. Blah and Blub
1. Blah
1. Blub
7. Blah and Blub
- Blah
- Blub
- Blah
- Blub
8. Blub and Blah
- Blah
- Blub
- Blah
- Blub
- Blah
- Blub
- Blah
- Blub
9. Blah, Blub and Blub
- Blah
- Blub
- Blah
- Blub

View file

@ -1,291 +0,0 @@
# fields in curricular description
# leaning on methods in OpenAPI 3.0
#
# Modulname
#
name:
type: str
label:
de: "Modulname"
en: "name of course"
#
# Modulverantwortliche:r
#
instructor:
type: str
translatable: false
label:
de: "Modulverantwortlicher/Modulverantwortliche"
en: "module instructor"
#
# Kürzel / ID
#
id:
type: str
translatable: false
label: {
de: "Kürzel",
en: "code"
}
#
# Qualifikationsziele
#
# Welche fachbezogenen, methodischen, fachübergreifende Kompetenzen,
# Schlüsselqualifikationen - werden erzielt (erworben)? Diese sind
# an der zu definierenden Gesamtqualifikation (angestrebter Abschluss) auszurichten.
#
# Lernergebnisse sind Aussagen darüber, was ein Studierender nach Abschluss des Moduls weiß,
# versteht und in der Lage ist zu tun. Die Formulierung sollte sich am Qualifikationsrahmen
# für Deutsche Hochschulabschlüsse orientieren und Inhaltswiederholungen vermeiden.
#
# Des Weiteren finden Sie im QM-Portal die „Handreichung zur Beschreibung von Lernzielen“
# als Formulierungshilfe.
goal:
type: str
label: {
de: "Qualifikationsziele",
en: "educational goal"
}
#
# Modulinhalte
#
# Welche fachlichen, methodischen, fachpraktischen und fächerübergreifenden
# Inhalte sollen vermittelt werden?
#
# Es ist ein stichpunktartiges Inhaltsverzeichnis zu erstellen.
content:
type: str
label: {
de: "Modulinhalte",
en: "content"
}
#
# Lehrform
#
#
# Welche Lehr- und Lernformen werden angewendet?
# (Vorlesungen, Übungen, Seminare, Praktika,
# Projektarbeit, Selbststudium)
#
# Es sind nur Werte aus der Prüfungsordung zugelassen
#
form-of-instruction:
label: {
de: "Lehrform(en)",
en: "form of instruction"
}
type: multikey
keys: {
'lecture' : {
de: "Vorlesung",
en: "lecture"
},
'lecture_seminar' : {
de: "Seminaristische Vorlesung",
en: "lecture and seminar"
},
'seminar' : {
de: "Seminar",
en: "seminar"
},
'exersise' : {
de: "Übung",
en: "lab exersise"
},
'pc_lab' : {
de: "Rechnergestütztes Praktikum",
en: "PC exersise"
},
'project' : {
de: "Project",
en: "project"
}
}
template:
de: "${key} (${value}SWS)"
en: "${key} (${value}SWS)"
#
# Voraussetzungen für die Teilnahme
#
# Für jedes Modul sind die Voraussetzungen für die Teilnahme zu beschreiben.
# Welche Kenntnisse, Fähigkeiten und Fertigkeiten sind für eine
# erfolgreiche Teilnahme vorauszusetzen?
#
# Alternativ können die Module benannt werden welche für die erfolgreiche
# Teilnahme im Vorfeld zu belegen sind.
prerequisites:
type: str
label: {
de: "Voraussetzungen für die Teilnahme",
en: "prerequisites"
}
#
# Literatur und multimediale Lehr- und Lernprogramme
#
#
# Wie können die Studierenden sich auf die Teilnahme an diesem Modul vorbereiten?
#
teaching-material:
type: str
label: {
de: "Literatur und multimediale Lehr- und Lernprogramme",
en: "media of instruction"
}
#
# Lehrbriefautor
#
author-of-indenture:
type: str
label: {
de: "Lehrbriefautor",
en: "author of indenture"
}
#
# Verwendung in (Studienprogramm)
#
used-in:
type: str
label: {
de: "Verwendung",
en: "used in study programs"
}
#
# Arbeitsaufwand
#
workload:
type: str
label: {
de: "Arbeitsaufwand / Gesamtworkload",
en: "workload"
}
#
# credits/ECTS
#
credits:
type: num
label: {
en: "credits and weight of mark",
de: "Kreditpunkte und Gewichtung der Note in der Gesamtnote"
}
template:
de: "${value}CP Gewichtung: ${value}CP von 120CP "
en: "${value}CP weight: ${value} / 120 "
#
# Leistungsnachweis
#
form-of-exam:
label: {
de: "Leistungsnachweis",
en: "form of examination"
}
type: enum
values: {
'written' : {
de: "Schriftliche Prüfung",
en: "written exam"
},
'oral' : {
de: "Mündliche Prüfung",
en: "oral exam"
},
'alternative' : {
de: "Alternative Prüfungunsleistung",
en: "alternative examination"
}
}
spec: true
template:
de: "${value} (${spec})"
en: "${value} (${spec})"
#
# Semester
#
term:
label: {
de: "Semester",
en: "term"
}
type: multinum
template:
de: " ${value}. Semester"
en: " ${value}. semester"
#
# Häufigkeit des Angebots
#
frequency:
label: {
de: "Häufigkeit des Angebots",
en: "frequency of Offer"
}
type: "enum"
values: {
'once_per_term' : {
de: "jedes Semester",
en: "every term"
},
'once_per_year' : {
de: "einmal im Studienjahr",
en: "once per study year"
}
}
duration:
type: int
label:
de: Dauer
en: duration
template:
de: "$value Semester"
en: "$value term(s)"
kind:
type: enum
label: {
de: 'Art der Veranstaltung (Pflicht, Wahl, etc.)',
en: 'kind of module (compulsory, elective)'
}
values: {
'compulsory': {
de: "Pflicht",
en: "compulsory"
},
'elective' : {
de: "Wahl/Wahlpflicht",
en: "elective"
}
}
remarks:
type: str
label: {
de: "Besonderes",
en: "remarks"
}