PixSpace/src/projection.rs

228 lines
6.6 KiB
Rust

use bevy::math::{Affine3A, Mat4, Quat};
use bevy::prelude::*;
/// creates a conventional projection matrix from frustum planes
///
/// returns a potentially off-axis projection matrix
pub fn make_projection_rh_from_frustum(
left: f32,
right: f32,
bottom: f32,
top: f32,
near: f32,
far: f32,
) -> Mat4 {
// based on OpenSceneGraph / glFrustum implementation
let a = (right + left) / (right - left);
let b: f32 = (top + bottom) / (top - bottom);
let c = if far.abs() > f32::MAX {
-1.0
} else {
-(far + near) / (far - near)
};
let d = if far.abs() > f32::MAX {
-2.0 * near
} else {
-2.0 * far * near / (far - near)
};
Mat4::from_cols(
Vec4::new(2.0 * near / (right - left), 0.0, 0.0, 0.0),
Vec4::new(0.0, 2.0 * near / (top - bottom), 0.0, 0.0),
Vec4::new(a, b, c, -1.0),
Vec4::new(0.0, 0.0, d, 0.0),
)
}
/// creates a projection from a frustum planes with a reversed depth mapped to [0..1]
pub fn make_projection_rh_from_frustum_reversed(
left: f32,
right: f32,
bottom: f32,
top: f32,
z_near: f32,
z_far: f32,
) -> Mat4 {
assert!(z_near > 0.0 && z_far > 0.0);
//
// reversed z 0..1 projection based on https://thxforthefish.com/posts/reverse_z/
//
let a = (right + left) / (right - left);
let b = (top + bottom) / (top - bottom);
let c = z_near / (z_far - z_near);
let d = z_far * z_near / (z_far - z_near);
let sx = 2.0 * z_near / (right - left);
let sy = 2.0 * z_near / (top - bottom);
//
Mat4::from_cols(
Vec4::new(sx, 0.0, 0.0, 0.0),
Vec4::new(0.0, sy, 0.0, 0.0),
Vec4::new(a, b, c, -1.0),
Vec4::new(0.0, 0.0, d, 0.0),
)
}
pub fn make_projection_rh_custom(fov_y: f32, aspect_ratio: f32, z_near: f32, z_far: f32) -> Mat4 {
let tan_fovy = (fov_y * 0.5).tan(); // use half angle beta
let right = tan_fovy * aspect_ratio * z_near;
let left = -right;
let top = tan_fovy * z_near;
let bottom = -top;
//make_projection_rh_from_frustum(left, right, bottom, top, z_near, z_far)
make_projection_rh_from_frustum_reversed(left, right, bottom, top, z_near, z_far)
}
pub fn create_offaxis_matrices(
screen_lower_left: Vec3,
screen_lower_right: Vec3,
screen_upper_left: Vec3,
pos_eye: Vec3,
z_far: f32,
) -> (Mat4, Mat4) {
//
let vec_right = screen_lower_right - screen_lower_left; // vr
let vec_up = screen_upper_left - screen_lower_left; // vu
let frustum_left = screen_lower_left - pos_eye; // va
let frustum_right = screen_lower_right - pos_eye; // vb
let frustum_up = screen_upper_left - pos_eye; // vc
let vec_right_normalized = vec_right.normalize();
let vec_up_normalized = vec_up.normalize();
let vec_normal = vec_right_normalized.cross(vec_up_normalized).normalize();
let dist = -frustum_left.normalize().dot(vec_normal);
// println!("vec_right_normalized {}",vec_right_normalized);
// println!("vec_up_normalized {}",vec_up_normalized);
// println!("vec_normal {}",vec_normal);
// println!("Dist {}",dist);
// small offset for the near plane
let min_near_distance_offset = 0.01f32;
// set a minimal near distance
let min_near_distance = 0.00001f32;
// calculate a reasonable near distance
let z_near = min_near_distance.max(dist - min_near_distance_offset);
// distances
let left = vec_right_normalized.dot(frustum_left) * z_near / dist; // left screen edge
let right = vec_right_normalized.dot(frustum_right) * z_near / dist; // right screen edge
let bottom = vec_up_normalized.dot(frustum_left) * z_near / dist; // bottom screen edge
let top = vec_up_normalized.dot(frustum_up) * z_near / dist; // distance eye from screen
// info!("l r b t {} {} {} {}",left,right,bottom,top);
// create a view frustum
let projection_matrix =
make_projection_rh_from_frustum_reversed(left, right, bottom, top, z_near, z_far);
let view_matrix_rotation = Mat4::from_cols(
Vec4::new(
vec_right_normalized.x,
vec_up_normalized.x,
vec_normal.x,
0.0,
),
Vec4::new(
vec_right_normalized.y,
vec_up_normalized.y,
vec_normal.y,
0.0,
),
Vec4::new(
vec_right_normalized.z,
vec_up_normalized.z,
vec_normal.z,
0.0,
),
Vec4::W,
);
let rotation_quat = Quat::from_mat4(&view_matrix_rotation); // Quat::from_mat4(view_matrix_rotation);
// info!("Rotation Mat {:?}",view_matrix_rotation);
// info!("Viewer Rotation {:?}",rotation_quat);
let view_matrix_eye = Mat4::from_cols(Vec4::X, Vec4::Y, Vec4::Z, (-pos_eye).extend(1.0));
// create resulting view matrix (this should be much simpler using glam API)
let view_matrix = view_matrix_rotation * view_matrix_eye;
// return tuple of view and projection
(view_matrix, projection_matrix)
}
#[cfg(test)]
mod tests {
use bevy::prelude::*;
use crate::{projection::create_offaxis_matrices, screeninfo};
use super::make_projection_rh_from_frustum;
#[test]
fn compare_projections() {
// build an on-axis frustum
let fovy = 33.0_f32;
let aspect_ratio = 1.6666_f32;
let z_near = 1.0_f32;
let z_far = 1000.0_f32;
let tan_fovy = (fovy * 0.5).to_radians().tan(); // use half angle beta
let right = tan_fovy * aspect_ratio * z_near;
let left = -right;
let top = tan_fovy * z_near;
let bottom = -top;
let mat_frust = make_projection_rh_from_frustum(left, right, bottom, top, z_near, z_far);
println!("mat 1 {:?}", mat_frust);
let mat_pers = Mat4::perspective_rh_gl(fovy.to_radians(), aspect_ratio, z_near, z_far);
println!("mat 2 {:?}", mat_pers);
assert!(mat_frust.abs_diff_eq(mat_pers, f32::EPSILON));
}
#[test]
fn create_view_matrices() {
// Assumptions: Screensize 6.0m x 1.8m
// Viewer is 5m away from center
let screen_lower_left = Vec3::new(-3.0, -0.9, 0.0);
let screen_lower_right = Vec3::new(3.0, -0.9, 0.0);
let screen_upper_left = Vec3::new(-3.0, 0.9, 0.0);
let eye_pos = Vec3::Z * 5.0;
let z_far = 100.0_f32;
let (view, projection) = create_offaxis_matrices(
screen_lower_left,
screen_lower_right,
screen_upper_left,
eye_pos,
z_far,
);
println!("View {:?}", view);
println!("Projection {:?}", projection);
// assert!(!view.is_nan());
// assert!(!projection.is_nan());
}
}